The sizes of maximal planar, outerplanar, and bipartite planar subgraphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The sizes of maximal planar, outerplanar, and bipartite planar subgraphs

We deene the subvariance S P (F) of a family of graphs F with respect to property P to be the innmum of the ratio jH1j jH2j , where H 1 and H 2 are any two maximal spanning subgraphs of G with property P, and where G is a member of F. It is shown that, for the family of all connected graphs, the subvariance when P is planar, outerplanar, and bipartite planar, is 1=3, 1=2, and 1=2, respectively.

متن کامل

Large Induced Outerplanar and Acyclic Subgraphs of Planar Graphs

Albertson and Berman [1] conjectured that every planar graph has an induced forest on half of its vertices; the current best result, due to Borodin [3], is an induced forest on two fifths of the vertices. We show that the Albertson-Berman conjecture holds, and is tight, for planar graphs of treewidth 3 (and, in fact, for any graph of treewidth at most 3). We also improve on Borodin’s bound for ...

متن کامل

Spanning Maximal Planar Subgraphs of Random Graphs

We study the threshold for the existence of a spanning maximal planar subgraph in the random graph Gn . We show that it is very near p = ~TTOWe also discuss the threshold for the existence of a spanning maximal outerplanar subgraph. This is very near

متن کامل

Outerplanar and planar oriented cliques

The clique number of an undirected graphG is the maximum order of a complete subgraph of G and is a well-known lower bound for the chromatic number ofG. Every proper k-coloring of G may be viewed as a homomorphism (an edge-preserving vertex mapping) of G to the complete graph of order k. By considering homomorphisms of oriented graphs (digraphs without cycles of length at most 2), we get a natu...

متن کامل

The Degree/Diameter Problem in Maximal Planar Bipartite graphs

The (∆, D) (degree/diameter) problem consists of finding the largest possible number of vertices n among all the graphs with maximum degree ∆ and diameter D. We consider the (∆, D) problem for maximal planar bipartite graphs, that are simple planar graphs in which every face is a quadrangle. We prove that for the (∆, 2) problem, the number of vertices is n = ∆ + 2; and for the (∆, 3) problem, n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 1996

ISSN: 0012-365X

DOI: 10.1016/0012-365x(94)00326-e